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Abstract

This article presents the temperature–entropy analysis, where the Thomson effect bridges the Joule heat and the Fourier heat across
the thermoelectric elements of a thermoelectric cooling cycle to describe the principal energy flows and performance bottlenecks or dis-
sipations. Starting from the principles of thermodynamics of thermoelectricity, differential governing equations describing the energy and
entropy flows of the thermoelectric element are discussed. The temperature–entropy (T–S) profile in a single Peltier element is pictured
for temperature dependent Seebeck coefficient and illustrated with data from commercial available thermoelectric cooler.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The basic thermoelectric effects such as Peltier, Joule and
Thomson were discovered and their macroscopic thermody-
namic understanding was achieved between the 1820s and
the 1850s. The interest in thermoelectric cooler was renewed
in the middle of the 20th century when it was discovered that
doped semiconductors were made for better thermoelectric
materials than metals [1,2]. The use of semiconductors in
thermoelectric refrigeration was proposed [3] using materi-
als of high mean atomic weights and high thermoelectric
powers. The relationship between cooling capacity and the
coefficient of performance (COP) was examined for a single
stage thermoelectric cooling unit with respect to a given
temperature difference between the hot and cold junctions,
and the design equations and performance graphs were pre-
sented [4]. In 1948, using the Onsager reciprocal relationship
[5] the thermoelectric effects for the thermoelectric device
are clearly presented [6] and the Thomson effect along the
thermoelectric arm is demonstrated [6]. An earlier but
important development is the theoretical formulation of
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irreversible thermodynamics [7], which assisted the progress
of understanding thermoelectric coolers. Tolman and Fine
[8] introduced the mathematical framework of entropy pro-
duction or generation by irreversible processes that take
place inside the system. They computed the rate of irrevers-
ible entropy production within two thermoelectric wires by
considering the degradation of energy accompanying the
joule heating effect and the irreversible flow of heat along
the thermoelectric arms. These pioneer works have led to
a plethora of recent publications in the area of thermoelec-
trics [9–15].

In 1990, a new interest in the study of irreversible pro-
cesses in thermoelectric for refrigeration was reported by
Hasse [9], and Yamanashi [10] elaborated a new optimiza-
tion for designing the thermoelectric coolers using a dimen-
sionless entropy flow approach. The study involving the
interface effects of thermoelectric micro-refrigerators was
proposed by Sungtaek and Ghosal [11], where they
employed a phenomenological model to examine the behav-
ior of thermoelectric refrigerator and modified the conven-
tional definition of the figure-of-merit to capture the
interface effects. The performances of the thermoelectric
device have been discussed using the classical tem-
perature–entropy approach [12–15] that provided a clear
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Nomenclature

A cross-sectional area of thermoelectric element
(m2)

cp specific heat capacity (J kg�1 K�1)
DT temperature different between hot and cold

junctions (K)
I current (amp)
J current density (amp m�2)
JS entropy flux (W m�2 K�1)
L thermoelectric length (m)
Q heat or energy (W)
Sgen entropy generation (W m�3 K�1)
T temperature (K)
t time (s)
x co-ordinate along X-axis (–)
q density (kg m�3)

k thermal conductivity (W m�1 K�1)
r electrical conductivity (X�1 m�1)
s Thomson coefficient (V K�1)
p Peltier coefficient (V)
a Seebeck coefficient (V K�1)

Subscripts

dissip dissipation
max maximum value
H hot junction
L cold junction
F Fourier heat
J Joule heat
T Thomson heat

Fig. 1. The schematic view of a thermoelectric cooler.
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understanding as to how the electrical energy input has been
utilized to produce the useful cooling, as well as how they
have been consumed by the dissipative effects.

In this paper, the authors review the irreversible thermo-
dynamic formulations for the temperature–entropy analy-
sis of thermoelectric coolers with a special emphasis on
the temperature dependency of Seebeck coefficient and
hence, leading to the inclusion of the Thomson heat which
has not been considered previously [12–14]. This new
approach completes the physics of thermoelectric cooling
where all thermoelectric effects are added to form the tem-
perature–entropy relationship such that energy dissipation
due to Joule, Fourier and Thomson heats are captured.

2. Theory

The thermoelectric effects such as Seebeck, Peltier and
Thomson effects are related to the transformation of ther-
mal into electrical energy, and vice versa. The absorption
of Thomson heat in the interior of a thermally non-uniform
hot conductor has been reported to be the additive super-
position of two effects: firstly, a part of Thomson effect is
the internal Peltier effect which is caused by the non-equi-
librium electron distribution functions in a thermally
non-uniform conductor, and secondly, the other part of
heat is absorbed due to current flow against the drift
potential difference [16]. When an electric field is applied
to a thermoelectric device, the irreversible processes which
are occurred in a thermoelectric elemental are: (i) electric
conduction (electric current due to an electric potential
gradient), (ii) heat conduction (heat flow due to a tem-
perature gradient), (iii) a cross effect (electric current due
to a temperature gradient) [5], and (iv) the appropriate
reciprocal effect (heat flow due to an electric potential
gradient) [5].

The refrigeration capability of a semiconductor material
depends on parameters such as the Peltier effect, Joule heat,
Thomson heat and material’s physical properties over the
operational temperatures between the hot and cold ends.
A thermoelectric device as shown in Fig. 1(a) is composed
of p-type and n-type thermoelectric elements such as Bi2Te3

and these are connected electrically in series and thermally
in parallel. The thermoelectric cooling is generated by pass-
ing a direct current through one or more pairs of n- and
p-type thermoelements, the temperature of cold reservoir
decreases because the electrons and holes pass from the
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low energy level in p-type material through the intercon-
necting conductor to the higher energy level in the n-type
material. Similarly, the arrival of electrons and holes in
the opposite ends result in an increase of energy level and
hence, an increase in the local temperature forming the
hot junction. When a temperature differential is established
between the hot and cold junctions, a Seebeck voltage is
generated and the voltage is directly proportional to
the temperature differential. When current is applied to a
thermoelectric element, thermal energy is generated or
absorbed at the junction due to Peltier effect. The Peltier
heat exchange between the metal and semiconductor (both
the n- and p-type) is illustrated in Fig. 1(a). The Seebeck
coefficient depends on temperature and this is different at
different places along the TE material [17]. The thermoelec-
tric element is a combination of as a series of many small
Peltier junctions [dotted line as shown in Fig. 1(a)] and
each of which individually generates or absorbs heat. This
is called Thomson power evolved per unit volume. In
Thomson effect, the heat is absorbed or evolved when cur-
rent flows in a thermoelectric element with a temperature
gradient and this effect is proportional to both the electric
current and the temperature gradient. The Thomson effect
occurs along the thermoelectric element, arising from the
gradients of Seebeck coefficient and the local temperature.
As all thermoelectric effects are caused by coupling between
charge transport and heat transport, the quantification of
these transports can be evaluated using the mass, energy
and entropy equations, forming rigorous thermodynamic
frameworks, which are described in the following section.

3. Energy and entropy balance

The energy balance of a bulk thermoelectric device
where an electric current and a heat current flow parallel
from the p-leg to the n-leg (or from the n-leg to the
p-leg) depending on the direction of current in presence
of an applied electric field, is given by [1,2]

qcp
oT
ot
¼ r � ðkrT Þ þ J 2

r
� JsrT . ð1Þ

Lord Kelvin first proposed the quasi-thermodynamic
method [6] of the thermoelectric effects to prove the validity
of the relationships �s ¼ p

T � dp
dT and p = aT where s is the

Thomson coefficient, p is the Peltier heat and a is the See-
beck coefficient. Hence the gradient of Peltier heat rp
¼ rpjT þ op

oT � rT
� �

splits up into two parts [7]: The first
presents the heat effect even in the absence of temperature
gradient and the second part indicates the heat effect due
to a temperature gradient. Using Eq. (1), the energy balance
of a thermoelectric element is written as

qcp
oT
ot
¼ r � ðkrT Þ þ J 2

r
� JT

oa
oT
� rT þ JTrajT. ð2Þ

Following the Gibbs law and energy conservation within a
control volume [7], the basic entropy balance equation can
be expressed as [15]
oðqsÞ
ot
¼ r � � krT

T
þ aJ

� �

þ J 2

T r
� krT � r 1

T

� �
þ J � rajT

� �
; ð3Þ

where the first terms indicate the entropy flux JS

(W m�2 K�1) and the second terms are entropy generation
Sgen (W m�3 K�1) and these are expressed as

JS ¼
�krT

T
þ aJ ð4Þ

and

Sgen ¼
J 2

T r
� krT � r 1

T

� �
þ J � rajT. ð5Þ

With the boundary conditions indicated in Fig. 1(b), for
thermoelectric legs of length L (0 6 x 6 L), the one-dimen-
sional energy balance equation for p- and n-legs becomes

ðqcpÞ
oT ðx; tÞ

ot
¼ k

o
2T ðx; tÞ
ox2

þ J 2

r
� sJ � oT ðx; tÞ

ox
. ð6Þ

Putting boundary conditions (at x = 0, T = TL and x = L,
T = TH), the steady state analytical solution of Eq. (6) is

written as T ¼ T L þ qJ
s xþ DT�qJL

sð Þ
e

sJ
k

Lð Þ�1

� 	 e
sJ
k xð Þ � 1

� 	
, where DT

indicates the temperature difference between the hot and
cold junctions, i.e., DT = TH � TL. Hence the temperature
gradient along x direction is given by

dT
dx
¼ qJ

s
þ exp

sJ
k

x
� �

DT� qJL
s

� �
sJ
k

exp sJ
k L
� �

� 1
� �
" #

or

� kA
dT
dx
¼ � kqI

s
þ

� kADT
L þ

kqI
s

� �
sIL
kA

exp sIL
kA 1� x

L

� �� �
� exp � sIL

kA
x
L

� �� � ;
ð7Þ

where I = JA. Defining Fourier heat QF ¼ kADT
L , Joule heat

QJ ¼ qI2L
A , Thomson heat QT = IsDT and QT

QF
¼ IsDT

kADT
L
¼ IsL

kA .
Eq. (7) is written as

�kA
dT
dx
¼ � kqI

s
þ

�QF þ kqI
s

� � QT

QF

exp QT

QF
1� x

L

� �� 	
� exp � QT

QF

x
L

� 	� 	 .

ð8Þ

At cold junction (x = 0)

�kA
dT
dx
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Using the expansion of
QT
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After rearranging,
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ð9Þ
Similarly at hot junction (removing all higher order terms)

�kA
dT
dx
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Fig. 2. T–a diagram of a
The higher order terms of Eqs. (9) and (10) indicate the
interactions of Joule, Thomson and Fourier effects.

The transport of energy along the thermoelectric
arm is

QðxÞ ¼ aIT ðxÞ � kA
dT
dx
;

QðxÞ ¼ aIT ðxÞ � kqI
s

þ
�QF þ kqI

s

� � QT

QF

exp QT

QF
1� x

L

� �� 	
� exp � QT

QF

x
L

� 	� 	 .

ð11Þ

The entropy flux along the thermoelectric arm is simply ob-
tained by the ratio of Q(x) to T(x), i.e.,

JSðxÞ ¼ aI � kqI
sT ðxÞþ

�QFþ kqI
s

� �QT

QF

exp QT

QF
ð1� x

LÞ
� 	

� exp �QT

QF

x
L

� 	� 	 1

T ðxÞ .

ð12Þ

Eq. (12) represents the entropy flow along the thermoelec-
tric arm and captures the contributions of Peltier, Joule,
Fourier and Thomson heats. Joule contribution extracts
the entropy produced by the flow of current. Fourier heat
also removes the flow of energy due to the transportation
of heat from hot to cold junctions. The Thomson heat sup-
plies the flow of entropy in the particles of the thermoelec-
tric element, so the Thomson heat may be referred to as
‘the specific heat of electricity’ [6].
0.00005 0.0001 0.00015 0.0002 0.00025
fficient (V/K)
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p-arm

J

thermoelectric pair.
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4. Temperature–entropy (T–S) diagram and analysis

From the work of Carnot and Clasius, Kelvin deduced
that the reversible heat flow discovered by Peltier must have
entropy associated with it. It has been shown that the coef-
ficient discovered by Seebeck was a measure of entropy
associated with electric current [2]. With the general formu-
lation of Eqs. (6) and (12), a temperature–entropy flux
diagram can now be drawn as a function of the spatial
length of the p- and n-elements of thermoelectric. Prior to
the temperature–entropy diagram, the authors plot the tem-
perature–Seebeck coefficient or T–a for the operation of a
thermoelectric cooler, which is shown in Fig. 2. For an ideal
thermoelectric device, the Seebeck (a) coefficient is constant
Table 1
Physical parameters of a single thermoelectric couple

Property Value

Hot junction temperature, TH 300 K
Cold junction temperature, TL 270 K
Thermoelectric element length, L 1.15 · 10�3 ma

Cross-sectional area, A 1.96 · 10�6 m2 a

Electrical conductivity, r 97087.38 X�1 m�1 a

Seebeck coefficient, a,
a(T) = a0 + a1 ln(T/T0)

a0 = 210 · 10�6 V/K,
a1 = 120 · 10�6 V/K,
T0 = 300 K [17]

Thermal conductivity, k 1.70 W m�1 K�1 a

Thomson coefficient, s 6.7 · 10�5 V/K [18]

a Melcor thermoelectric catalogue, MELCOR CORPORATION, 1040
Spruce Street, Trenton, NJ 08648, USA. Web site: www.melcor.com.
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Fig. 3. Temperature–entropy flux diagram for the thermoelectric cooler at the
and the heat flux at the hot and cold junctions are given by
aJTi where the subscript i refers either to the hot or cold
junction. Thus, the temperature Seebeck coefficient (T-a)
plot is simply a simple rectangle. However, the effect of tem-
perature on the Seebeck coefficient (a) induces the dissipa-
tive losses along the p- and n-legs of thermoelectric
couples and an indication of these losses are shown by the
shaded area on the T–a plot, as shown in Fig. 2, in which
the physical properties of the bismuth telluride thermoelec-
tric pairs are used. The two isotherms are the hot and cold
junctions whilst the inclined lines indicate the effect of tem-
perature on the a values when the current (I) travels along
the p- and n-legs. The physical properties of the bismuth tel-
luride thermoelectric pairs used in the computation are as
listed in Table 1.

For thermodynamic consistency, the temperature–
entropy (or temperature–entropy flux) plot is highlighted
to demonstrate how the electric energy input is distributed
in the thermoelectric p- and n-elements, i.e., identifying the
useful effects and the dissipative losses of a thermodynamic
cycle. For an optimum current operation of the thermo-
electric cooler, for example, the entropy generations or
energy dissipations due to the conduction heat transfer
and the Joule heating effect along are manifested by
enclosed polygonal areas ‘‘k–l–u–r–d–c–k’’ and ‘‘j–i–n–q–
a–b–j’’ of Fig. 3. The shaded areas under trapezoidal
corresponds to the dissipation from the temperature effects
on the Seebeck coefficient. It is noted that all entropy
generation (internal and external) have the consequence
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Table 2
Description of close loop a–b–c–d–a (Fig. 3)

Thermodynamic process Description

a–b This process is developed along p-arm of the thermoelectric pair. Points a and b are the states at the ends of
the thermoelement of which the temperatures are TL and TH, respectively (as current density J flows from
p-arm to n-arm). The process a–b can not be adiabatic because it absorbs heat due to the Thomson effect which
depends on the Seebeck coefficient of the thermoelectric element. The areas beneath the a–b process represent
dissipation due to heat conduction, and heat absorbed by the Thomson effect. Area 2–i–j represents the energy
dissipation due to Seebeck coefficient, which varies along the thermoelectric p-arm

b–c This process represents the heat exchange between system and medium (environment) which occurs at the union
between p-arm and n-arm at temperature TH

c–d The process c-d is developed along n-arm, where points c and d are at the ends of the thermoelement whose
temperature are TH and TL. The areas beneath c–d process indicate heat losses due to dissipation. If this process is
adiabatic, the Thomson effect would be null. Area 1–l–k indicates the energy losses due to the
Thomson heat along the n-arm

d–a This process represents the heat exchange between the system and the heat load at isothermal condition; however,
it occurs in the physic union between thermoelectric elements at temperature TL
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of reducing the cooling effect, where the cooling capacity is
represented by the shaded rectangle area ‘‘a–d–r–q’’.
Within the internal framework of an adiabatic chiller, the
cycle ‘‘a–b–c–d’’ operates in an anti-clockwise manner,
comprising two isotherms b–c and d–a, as well as two adia-
bats a–b and c–d. Table 2 elaborates in details the processes
of the thermoelectric cooler. Thus, the temperature–
entropy flux diagram provides at a glance, how the real
chiller cycle of thermoelectric is inferior to the ideal Carnot
cycle by capturing the key losses and useful effects in
the cycle. From the perspective of the same energy input
to the thermoelectric, the Carnot efficiency is simply given
by

COPCarnot ¼ Areað1vm2Þ=Areað12jkÞ ¼ T L=DT .

Based on the process paths of the temperature–entropy flux
diagram, the heat transfers at the cold (process d–a) and hot
(process b–c) reservoirs can be easily tallied with respect to
the enclosed rectangular areas and these areas correspond
to the parameters such as the Peltier cooling or heating,
the Joule, Fourier and the Thomson heat. At x = 0 and
ignoring the contributions from the higher order terms
emanating from the expansion of the exponentials, the
cooling capacity at the cold junction can be shown to
be QL ¼ jAreaðadrqÞj ¼ aIT L�kA dT

dx




x¼0
¼ aIT L þ �QF�½

1
2
QT � 1

2
QJ� (neglecting higher order terms in Eq. (9)) and

similarly, at x = L, the heating capacity at the hot junction
is QH ¼ jAreaðbctoÞj ¼ aIT H�kA dT

dx




x¼L
¼ aIT H þ �QFþ½

1
2
QT þ 1

2
QJ� (neglecting higher order terms in Eq. (10)).

Thus, the power input (P) to the thermoelectric becomes
QH � QL, i.e., P = aI(TH � TL) + QJ + QT.

For the purpose of concise presentation of the COP-
entropy map at the cold junction, the COP and the non-
dimensional entropy fluxes of JS (x = 0)/JS,max (x = 0) are
employed and these are shown in Fig. 4. These two ‘‘kid-
ney-shape’’ curves, where one (solid lines) indicates the
effect of Thomson heat at different current fields and the
other (dotted lines) does not possess the Thomson heat
effect, are traced in the clockwise directions along with four
salient operational points of a thermoelectric cooler. For
example, as indicated on each operational loop, (i) Point
‘‘A’’ indicates the COP at its low current limit in which
the Thomson effect is negligible, (ii) Point ‘‘B’’ is the maxi-
mum COP at the optimum current flow, where the perfor-
mance drops 7.1% as a result of Thomson heat effect at
the same cooling power, (iii) Point ‘‘C’’ denotes the maxi-
mum entropy flux or output power, where the cooling
capacity is decreased about 7% due to Thomson heat and
(iv) Point ‘‘D’’ represents the vanishing COP at the higher
current limit in which there is no Thomson effect. When
the Thomson coefficient s = 0, there is no loss but if s < 0,
the cooling capacity as well as the performance of the ther-
moelectric cooler is improved. So the cooling efficiency of a
thermoelectric cooler can be improved not only by increas-
ing the figure-of-merit of the thermoelectric materials but
also by taking advantage of the Thomson effect [18].

Fig. 5 shows an enlarged temperature–entropy flux
diagram where the adiabats linking the two isotherms are
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represented by paths ‘‘a–b’’ and ‘‘c–d’’. The shaded area
along the adiabats represents the entropy generation arising
from the Thomson effect, an effect that has been ignored by
previous work [13,14] and consequently, the cooling capac-
ity of thermoelectric would be reduced. For a better appre-
ciation of the dissipative effects in the thermoelectric
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thermoelectric element, where area (aefd) is the irreversibility due to heat cond
element, the temperature–entropy generation (T–Sgen) plot
is adopted. As shown in Fig. 6, two major dissipative mech-
anisms in the thermoelectric are clearly identified, namely,
(i) the Joule heat dissipation occurs along the two sides of
thermoelectric arms, depicted by the enclosed area a–g–h–
d, and (ii) a smaller loss arising from the heat conduction
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effect along the thermoelectric element, denoted by area a–
e–f–d, and the combined entropy generation or losses are
given by the area a–b–c–d.
5. Conclusions

The temperature–entropy flux diagram has been success-
fully demonstrated in the analysis of the cooling cycle of a
thermoelectric element. The area under the process paths
indicates how the energy input has been consumed by the
presence of both the reversible (Peltier, Seebeck and Thom-
son) and the irreversible (Joule and Fourier) effects. The
similarity between the Seebeck coefficient and entropy flux
of the thermoelectric element has also been depicted where
the T–a diagram would be equivalent to the Carnot cycle if
the thermoelectric arms are assumed adiabatic. However,
the temperature dependency of Seebeck coefficient is re-
vealed in a real T–a cycle. Lastly, the presence of Thomson
heat has been incorporated in the performance estimation
of a thermoelectric cooler and in contrary to previous stud-
ies, its contribution to the total losses at the cold junction is
estimated to be about 5–7%.
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